Improving the stability of the EC1 domain of E-cadherin by thiol alkylation of the cysteine residue.

نویسندگان

  • Maulik Trivedi
  • Jennifer S Laurence
  • Todd D Williams
  • C Russell Middaugh
  • Teruna J Siahaan
چکیده

The objective of this work was to improve chemical and physical stability of the EC1 protein derived from the extracellular domain of E-cadherin. In solution, the EC1 protein has been shown to form a covalent dimer via a disulfide bond formation followed by physical aggregation and precipitation. To improve solution stability of the EC1 protein, the thiol group of the Cys13 residue in EC1 was alkylated with iodoacetate, iodoacetamide, and maleimide-PEG-5000 to produce thioether derivatives called EC1-IA, EC1-IN, and EC1-PEG. The physical and chemical stabilities of the EC1 derivatives and the parent EC1 were evaluated at various pHs (3.0, 7.0, and 9.0) and temperatures (0, 3, 70 °C). The structural characteristics of each molecule were analyzed by circular dichroism (CD) and fluorescence spectroscopy and the derivatives have similar secondary structure as the parent EC1 protein at pH 7.0. Both EC1-IN and EC1-PEG derivatives showed better chemical and physical stability profiles than did the parent EC1 at pH 7.0. EC1-PEG had the best stability profile compared to EC1-IN and EC1 in solution under various conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of covalent dimerization on the physical and chemical stability of the EC1 domain of human E-cadherin.

The objective of this work was to evaluate the solution stability of the EC1 domain of E-cadherin under various conditions. The EC1 domain was incubated at various temperatures (4, 37, and 70 degrees C) and pH values (3.0, 7.0, and 9.0). At pH 9.0 and 37 or 70 degrees C, a significant loss of EC1 was observed due to precipitation and a hydrolysis reaction. The degradation was suppressed upon ad...

متن کامل

Evidence for histidine in the active sites of ficin and stem-bromelain.

1. Ficin and stem-bromelain are irreversibly inhibited by 1,3-dibromoacetone, a reagent designed to react first with the active-site cysteine residue and subsequently with a second nucleophile. Evidence is presented that establishes that a histidine residue is within a 5A locus of the active-site cysteine residue in both enzymes. The histidine residue in both enzymes is alkylated at N-1 by dibr...

متن کامل

Fluorescence labelling of NADPH-cytochrome P-450 reductase with the monobromomethyl derivative of syn-9,10-dioxabimane.

The kinetics of thiol-group alkylation in NADPH-cytochrome P-450 reductase during its inactivation by monobromobimane has been studied using the fluorimetric determination of S-bimane-L-cysteine by high-performance liquid chromatography. Loss of activity during the reaction of NADPH-cytochrome P-450 reductase with monobromobimane is caused by the alkylation of one single critical cysteine resid...

متن کامل

Adhesive and lateral E-cadherin dimers are mediated by the same interface.

E-cadherin is a transmembrane protein that mediates Ca(2+)-dependent cell-cell adhesion. To study cadherin-cadherin interactions that may underlie the adhesive process, a recombinant E-cadherin lacking free sulfhydryl groups and its mutants with novel cysteines were expressed in epithelial A-431 cells. These cysteine mutants, designed according to various structural models of cadherin dimers, w...

متن کامل

Development of a Method for measuring Reactive Oxygen Radicals Levels In Vitro and Study the Effects of Vitamin C and E on Radical Production Reaction

Background: Free radicals and reactive oxygen species(ROS) are the most important factors in formation of oxidative stress reaction. Now, radical damage has been suggested to contribute to a wide variety of diseases such as Alzheimer, atherosclerosis and cancer. Transition metal ions in the presence of the various biomolecules produce these active compounds. The aim of this study is introducing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of pharmaceutics

دوره 431 1-2  شماره 

صفحات  -

تاریخ انتشار 2012